Ca2F permeation in cyclic nucleotide-gated channels

نویسندگان

  • Claudia Dzeja
  • Volker Hagen
  • Stephan Frings
چکیده

Cyclic nucleotide-gated (CNG) channels conduct NaF, KF and Ca2F currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2F concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2F signaling depends on its specific Ca2F conductance, it is necessary to analyze Ca2F permeation for each individual channel type. We have analyzed Ca2F permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2F current over the physiological range of Ca2F concentrations and found that Ca2F permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2F permeation is controlled by the Ca2F-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2F signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.

The recent elucidation of the structure of the carboxyl-terminal region of the hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channel has prompted us to investigate a curious feature of this structure in HCN2 channels and in the related CNGA1 cyclic nucleotide-gated (CNG) channels. The crystallized fragment of the HCN2 channel contains both the cyclic nucleotide-binding domain (...

متن کامل

Ca2+ permeation in cyclic nucleotide-gated channels.

Cyclic nucleotide-gated (CNG) channels conduct Na+, K+ and Ca2+ currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2+ concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co...

متن کامل

REPORT: COST-STSM-TD1002-11449 Dynamics of Cyclic Nucleotide-Gated Channels by High-Speed Atomic Force Microscopy

Ion channels are membrane proteins facilitating ion fluxes across cell membranes, thereby regulating signal pathways for various physiological processes. The activity of ion channels can be triggered by the interaction with secondary messenger molecules and transmit this information into an electrical response by permeation of ions. Important members of this family are cyclic-nucleotide (cN) mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998